Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Arch. endocrinol. metab. (Online) ; 67(5): e000624, Mar.-Apr. 2023. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1439253

ABSTRACT

ABSTRACT Objective: The objective of this study was to investigate the association between SNPs in the TIE2 and ANGPT-1 genes and diabetic retinopathy (DR). Subjects and methods: This study comprised 603 patients with type 2 diabetes mellitus (T2DM) and DR (cases) and 388 patients with T2DM for more than 10 years and without DR (controls). The TIE2 rs639225 (A/G) and rs638203 (A/G) SNPs and the ANGPT-1 rs4324901 (G/T) and rs2507800 (T/A) SNPs were genotyped by real-time PCR using TaqMan MGB probes. Results: The G/G genotype of the rs639225/TIE2, the G/G genotype of the rs638203/TIE2 and the T allele of the rs4324901/ANGPT-1 SNPs were associated with protection against DR after adjustment for age, glycated hemoglobin, gender, and presence of hypertension (P = 0.042, P = 0.003, and P = 0.028, respectively). No association was found between the rs2507800/ANGPT-1 SNP and DR. Conclusion: We demonstrated, for the first time, the association of TIE2 rs638203 and rsrs939225 SNPs and ANGPT-1 rs4324901 SNP with protection against DR in a Brazilian population.

2.
Arch. endocrinol. metab. (Online) ; 66(1): 12-18, Jan.-Feb. 2022. tab
Article in English | LILACS | ID: biblio-1364310

ABSTRACT

ABSTRACT Objective: The AKR1B1 gene encodes an enzyme that catalyzes the reduction of glucose into sorbitol. Chronic hyperglycemia in patients with diabetes mellitus (DM) leads to increased AKR1B1 affinity for glucose and, consequently, sorbitol accumulation. Elevated sorbitol increases oxidative stress, which is one of the main pathways related to chronic complications of diabetes, including diabetic kidney disease (DKD). Accordingly, some studies have suggested the rs759853 polymorphism in the AKR1B1 gene is associated with DKD; however, findings are still contradictory. The aim was to investigate the association of the rs759853 polymorphism in the AKR1B1 gene and DKD. Materials and methods: The sample comprised 695 patients with type 2 DM (T2DM) and DKD (cases) and 310 patients with T2DM of more than 10 years' duration, but no DKD (controls). The polymorphism was genotyped by real-time PCR. Results: Allelic and genotype frequencies of this polymorphism did not differ significantly between groups. However, the A/A genotype was associated with risk for DKD after adjustment for gender, triglycerides, BMI, presence of hypertension and diabetic retinopathy, and duration of DM, under both recessive (P = 0.048) and additive (P = 0.037) inheritance models. Conclusion: Our data suggest an association between the AKR1B1 rs759853A/A genotype and risk for DKD in Brazilians T2DM patients.


Subject(s)
Humans , Aldehyde Reductase/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Case-Control Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Alleles , Gene Frequency , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL